Blog Layout

  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button

Constructing Haptic Systems

A special type of mechatronics known as haptic technology combines mechanical, electrical, and computational components. It provides users with more enhanced interaction with machines than existing traditional systems because of advanced sensors and actuators. Haptics gives users tactile stimuli including touch, pressure, weight, texture, and warmth in addition to visual and audio inputs from the computer. This encourages a deeper, more concrete link between our devices and us, elevating our use of programs to a more immersed state. In this blog, we will examine the advantages of haptics implementation for a variety of applications as well as the most recent design approaches for haptics feedback. 

Use Cases for Haptics 

Let's start by examining the ways in which haptics are already and will be used before asking why this is important or desirable. 

Medical 

Greater control and safety are possible in the medical industry, for example, by allowing doctors to feel what a robotic hand touch. Using haptic technology in surgical procedures like laparoscopic surgery, surgeons can make smaller incisions that heal more quickly for the patient. A surgeon may now execute delicate procedures with more precision thanks to remote-controlled manipulators and video. A surgeon needs to be aware of the force being applied by the knife. The incision is too deep and there is too much. Too little results in a shallow incision. A surgeon must also be aware of whether they are cutting through a blood vessel or simply shifting one out of the way. Force feedback is crucial in this scenario. 

Gaming 

Instead of using joysticks and keyboard clicks, haptics is used in gaming applications to give the user virtual feedback that resists control force and lets them experience the sensation of textures and other physical phenomena. To physically engage with a user, thus far, micromotors, piezo actuators, fluidic transfers, and air pressure have been used. But creating with these haptic technologies differs greatly from creating other, more conventional machine designs. 

To help engineers who are new to haptic technology, device manufacturers are fortunately addressing these demands through development systems and application examples. Accelerometers are a crucial piece of equipment utilized in haptic designs. These are utilized in remote robotic assemblies to deliver force feedback data, gloves to monitor hand motion, and headsets to adjust the field of view. 

Numerous device manufacturers provide development kits, application notes, reference designs, and accelerometers for OEM applications. Additionally, because accelerometers are widely used in cell phones, these multi-axis devices are inexpensive and easily accessible from well-known distributors and manufacturers. A common accelerometer development kit includes multi-axis sensors and a USB, I2C, SPI, or UART computer interface. Measurements up to 16G are not unusual, and outputs might be digital or analogue. 

 

 

Consumer Products 

Haptic designs are increasingly incorporating Inertial Measurement Units (IMUs) for applications that demand complicated motion recording and processing. IMUs are essentially sensors that include an accelerometer, gyroscope, and magnetometer. These highly integrated, ultra-low-power sensors can be tailored for a variety of high-performance uses, such as wearable technology, head-mounted technology, smartphones, cameras, drones, and augmented reality (AR) and virtual reality (VR) headsets. IMUs are a reliable smart sensor system package with ready-to-use software algorithms that can quickly calculate orientation, position, and velocity. This allows for position tracking and activity/gesture recognition with high accuracy and low latency. 

These multi-axis programmable smart sensor systems are also inexpensive and easily accessible from conventional distributors and manufacturers due to economies of scale and the ubiquitous use of IMUs in smart phones, cameras, drones, and other consumer gadgets. IMU development kits typically come with a multi-axis sensor, environmental sensors, and a computer interface like USB, I2C, SPI, or UART, just like accelerometers. 

Techniques for Haptic Design 

A number of design strategies have emerged because of the wide range of haptic technology applications, which engineers are still working to perfect. Some haptic designs include microfluidic techniques, which are also useful for producing sensation on the skin and pumping fluids into and out of a variety of chambers. Capillary tubes, microvalves, and pumps with micromotors are frequently employed. For the benefit of these microfluidic approaches, motor control technology is fortunately advanced, and a wide variety of motor control development kits are easily accessible. 

Microcontroller and Op-Amp Designs 

Op-Amps can often be used to power micromotors because they don't require a lot of current and can be driven in both directions. Microcontrollers with motor control capabilities, such as higher current drivers, pulse width modulation (PWMs), multiple timers, and even analogue outputs, can be used to drive the numerous motors, pumps, or micro-valves in applications where Op-Amps alone are insufficient to drive the micromotors. 

Processing of digital signals 

Operating micromotors and measuring back EMF, which can be used to evaluate resistance to digitally asserted pressures, benefit greatly from processors with digital signal processing (DSP) capabilities. A CPU section and a power transistor array are two examples of development boards. DSP-based haptic designs have a lot of potential for creating immersive experiences for a variety of media, including games, movies, music, and more. Haptic designs can improve user engagement and sensory stimulation by adding tactile vibrations to audiovisual information. Complex filtering algorithms can be carried out by processors with DSP capabilities for the application's many motors to be controlled precisely. These motor control approaches can also be employed to build fluid pump- and air-pressure-based sensory systems. Additionally, this technique can be modified to operate piezo actuators and ultrasonic emitters, as well as micro piezo actuators that can produce electromechanical sensation. 

 

Haptics using ultrasound 

A sophisticated haptic technology design also makes use of ultrasonic waves from an ultrasonic array that combine to create an impression of force. This kind of ultrasonic haptic technology uses focused ultrasound waves to generate mid-air haptic sensations so that users can feel feedback against their hands without actually touching a device. It has mostly been used to provide tactile feedback, simulating the feeling of hitting a virtual button, but its use is growing to excite and have a greater impact on the body as a whole. 

Hardware alone won't be sufficient for the upcoming HD haptics technology. Future haptic system designs must use software to get beyond the drawbacks of hardware-only approaches. 

Conclusion  

Although haptic design is a relatively new field, engineers can find development tools and advice online. More developer kits and application notes will appear as haptic products do. The gaming business will advance haptic technology more quickly and further than the medical, industrial, robotic control, and remote repair sectors. Haptic technology will be driven by readily available, greater volume applications to make specialized applications easier to build, opening opportunities for upcoming discoveries and uses. 


By Swetha Parvathy February 24, 2025
The Internet of Things (IoT) has revolutionized the way we live and work, connecting billions of devices and transforming industries. As we look to the future, it's clear that IoT will continue to play a major role in shaping our world. In this blog, we'll explore the top trends and predictions for the IoT industry over the next five years. Trend 1: Increased Adoption of Edge Computing Edge computing is a distributed computing paradigm that brings data processing closer to the source of the data, reducing latency and improving real-time decision-making. As IoT devices become more widespread, edge computing will become increasingly important for processing the vast amounts of data generated by these devices. Trend 2: Growing Importance of Artificial Intelligence (AI) and Machine Learning (ML) AI and ML will play a crucial role in the future of IoT, enabling devices to learn from their environment and make decisions autonomously. This will lead to increased efficiency, productivity, and innovation across various industries. Trend 3: Expansion of IoT into New Industries IoT is no longer limited to traditional industries like manufacturing and logistics. Over the next five years, we can expect to see IoT adoption in new industries such as: - Healthcare: IoT will enable remote patient monitoring, personalized medicine, and improved healthcare outcomes. - Agriculture: IoT will optimize crop yields, reduce waste, and improve supply chain efficiency. - Smart Cities: IoT will enable cities to become more efficient, sustainable, and livable. Trend 4: Increased Focus on Security and Privacy As IoT devices become more ubiquitous, security and privacy concerns will become increasingly important. We can expect to see a greater emphasis on secure-by-design principles, encryption, and secure data storage. Trend 5: Advancements in Wireless Communication Technologies Wireless communication technologies like 5G, Wi-Fi 6, and Bluetooth 5 will continue to evolve, enabling faster data transfer rates, lower latency, and greater connectivity. Prediction 1: IoT Devices Will Exceed 50 Billion by 2025 The number of IoT devices is expected to grow exponentially over the next five years, driven by increasing demand for smart home devices, wearables, and industrial IoT solutions. Prediction 2: IoT Will Drive Business Model Innovation IoT will enable new business models, such as product-as-a-service, data-driven services, and subscription-based models. Companies that adopt IoT will need to rethink their business strategies to remain competitive. Prediction 3: IoT Will Improve Sustainability and Reduce Carbon Footprint IoT will play a critical role in reducing carbon emissions and improving sustainability. By optimizing energy consumption, reducing waste, and improving supply chain efficiency, IoT will help companies meet their sustainability goals. Conclusion The future of IoT is exciting and rapidly evolving. Over the next five years, we can expect to see increased adoption of edge computing, AI, and ML, as well as expansion into new industries. As IoT continues to transform industries and improve our lives, it's essential to stay informed about the latest trends and predictions. By doing so, we can unlock the full potential of IoT and create a more connected, efficient, and sustainable world.
By Swetha Parvathy February 13, 2025
Inductors are a crucial component in electronic circuits, playing a vital role in filtering, impedance matching, and energy storage. With so many types of inductors available, selecting the right one for your circuit can be a daunting task. In this guide, we'll walk you through the key factors to consider when choosing an inductor, helping you make an informed decision for your design. Understanding Inductor Types Before diving into the selection process, it's essential to understand the different types of inductors available: 1. Air Core Inductors: These inductors have no magnetic core and are often used in high-frequency applications. 2. Ferrite Core Inductors: Ferrite core inductors use a magnetic core to increase inductance and are commonly used in power supplies and filters. 3. Iron Core Inductors: Iron core inductors use a magnetic core made of iron and are often used in high-current applications. 4. Toroidal Inductors: Toroidal inductors have a doughnut-shaped core and are used in applications where a high inductance value is required. 5. Chip Inductors: Chip inductors are surface-mount devices that offer high inductance values in a small package. Key Factors to Consider When selecting an inductor, consider the following factors: 1. Inductance Value: Choose an inductor with the correct inductance value for your application. Inductance values range from a few nanohenries (nH) to several henries (H). 2. Current Rating: Select an inductor that can handle the maximum current required by your circuit. 3. Frequency Range: Choose an inductor that operates within the frequency range of your application. 4. DC Resistance: Consider the DC resistance of the inductor, as it can affect the overall efficiency of your circuit. 5. Physical Size: Select an inductor that fits within the physical constraints of your design. 6. Temperature Range: Choose an inductor that operates within the temperature range of your application. 7. Cost and Availability: Consider the cost and availability of the inductor, as well as any potential lead-time issues. Additional Considerations 1. Saturation Current: Be aware of the saturation current of the inductor, as it can affect the overall performance of your circuit. 2. Shielding: Consider the shielding requirements of your inductor, as it can affect the overall electromagnetic compatibility (EMC) of your design. 3. Mounting: Select an inductor with a suitable mounting option, such as through-hole or surface-mount. Conclusion Choosing the right inductor for your circuit requires careful consideration of several factors. By understanding the different types of inductors available and considering key factors such as inductance value, current rating, and frequency range, you can select the optimal inductor for your design. Remember to also consider additional factors such as saturation current, shielding, and mounting to ensure the best possible performance. Recommended Products - Ferrite Core Inductors: Our ferrite core inductors offer high inductance values and are suitable for a wide range of applications. - Chip Inductors: Our chip inductors are surface-mount devices that offer high inductance values in a small package. - Toroidal Inductors: Our toroidal inductors have a doughnut-shaped core and are used in applications where a high inductance value is required.
Share by: